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Abstract

One of the options for increasing the longitudinal coherency of the X-ray FELs is
creating the electron beam bunching at the X-ray wavelength scale. Several
schemes, such as HGHG, EEHG, transverse beam masking before the Emittance
Exchanger (EEX), leading to significant amplitude of the beam microbunching
were recently proposed. All these scheme rely on the beam optics which include
several magnetic dipoles. While the beam passes through the dipole, its energy
spread increases due to quantum nature of synchrotron radiation. As a result, the
bunching factor at small wavelengths reduces since electrons having different
energies follow different trajectories in the bend. We study general concept of the
electron beam masking and determine the beam optics which transforms the
induced beam modulation into the longitudinal bunching. We rigorously
calculate the reduction in the bunching factor due to incoherent synchrotron
radiation (ISR) while the beam travels through the beam optics. We demonstrate
that the bunching smearing in chicanes is much larger than the bunching
smearing in the EEX consisting of the same bends. We determine parameters of
the EEX optics which result in the smallest decrease of the electron bunching due
to ISR-induced energy diffusion.



FEL principles
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Seeding schemes

FEL mode couples electron bunching and radiation. Therefore, FEL can be seeded
either by the coherent radiation or by beam bunching at the resonant wavelength.

optical seeding

beam seeding

D. Xiang and G. Stupakov,
Phys. Rev. Lett. 12, 030702 (2009).

J. Feldhaus et al.,
Opt. Comm. 140, 341 (1997).



Mechanism for bunching degradation

beam frame lab frame 

Electron radiated power

Electrons emit photons in quanta which
frequency (and quanta energy) strongly
depends on the angle of photon emission
due to Doppler shift.

Two electrons with close 6D position in
the phase space may end up at different
positions after passing the bend. As a
result, bunching degrades.



Qualitative estimate
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Vlasov Equation

conventional Vlasov equation in Plasma Physics
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Vlasov equation in  Beam Physics
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Electron coordinates in 6D phase
space change linearly under linear
forces applied

differential transform matrix
Newton equation
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Transform of beam modulation
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Vlasov equation can be formally solved
by tracing back the position of each
electron
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Speculative math
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Transform matrix for the wavevector should depend on
the beam transform matrix. It can include simple matrix
operations like self matrix, inversion, and transposition
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Illustration of modulation transform
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Advantages of description
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The problem generating a bunched beam with given envelope can be split into two problems:
1. One needs to determine the beamline which recovers required beam modulations
2. Placing additional beam transport upstream from the modulator section provides control over 
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Examples of nonoptimal optics

Emittance Exchanger study at Fermilab

Y.-E. Sun et al., arXiv 2010.

Imperfectly 
transformed 

beam 
modulations

Generation of trains of microbunches in Brookhaven Lab

P. Muggli et al., Phys. Rev. Lett 101, 054801 (2008).
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Fokker-Planck Equation
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Symmetric beamline
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Calculating modulation smearing in beamline
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Algorithm for calculating bunching degradation

1. Calculate the required bunching wavenumber at the beginning of optics k0 =MTkf;
2. Calculate the modulation wavenumber at each dipole entrance or exit;
3. Calculate the modulation wavenumber at each point inside the dipole knowing the 

modulation wavenumber at its edge;
4. Integrate attenuation of modulation knowing kz` inside the dipole, dA/ds=-Dk2

z`⋅A;
5. Repeat steps 3-4 for each dipole;
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Electron bunching through Emittance Exchanger (EEX)
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Comparison of bunching smearing in different beamlines





<








−



A
GeV
E

rayXλα
2/5

2/7

10
[deg]37.3

Single bend

qualitative estimate

[ ] ,deg
GeV 10

A 18exp    

1
39663

55exp

7
5

2

0

2

57
2

0





































−=

=

























⋅
−=

−

−

α
λ

λα
γα

π

EA

rAA

rayX

rayX

e

fine



quantitative estimate

( )



































−=

−

7

2
5

0 [deg]1
10

195exp α
λ rayX

A
GeV
EAA



( )



























+





























−=
−

11.0[deg]1
10

2347exp
2

3
567

2
5

0 ρα
α

λ
RA

GeV
EAA

rayX



Emittance EXchanger

Chicane

( ) 










∆






⋅−= −

2

2

2

3
3

0 %]01.0[/]T[
[deg]

10
109.1exp

γγ
α harmN
BGeV

EAA

Echo-Enabled  Harmonic  Generation (EEHG)

4.3GeV @    
[deg]

%]01.0[/]T[6.81

@14.2GeV     
[deg]

%]01.0[/]T[6.13

α
γγ

α
γγ

∆×
=

∆×
=

BN

BN

LCLSII
harm

LCLS
harm 2 nm laser

500 nm laser



Numerical verification
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Consistency of continuous description
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Results

• Formalism describing the evolution of the monochromatic beam modulations in the beamline is
developed.

• Rigorous formalism describing smearing of the beam modulations due ISR-induced energy spread is
developed. Straightforward algorithm for calculating the smearing effect in an arbitrary beamline is
described.

• It is demonstrated that the beam bunching degradation is caused by the beamline dispersion in case of
symmetric beamline.

• Smearing out of beam modulation in chicane and EEX is calculated. It is demonstrated that bunching
degradation in chicane is much stronger than in EEX since chicane has nonzero dispersion.

•Analytical results are verified numerically.
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